3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Взаимодействие глины с цементом

В работах М.И. Хигеровича применялись три вида глин, характеристики которых указаны в табл. 1.

Таблица 1

Наименование фракций и содержание каждой из них в %

Глина № 1 нижнекотельническая .
Глина № 2 черемушинская .
Глина № 3 з-да им. Карпова .

Ниже, в табл. 2, приведены факторы удельной поверхности по фракциям и даны общие факторы поверхности примененных глин. Как известно, вычисление фактора поверхности основано на допущении, что поверхность двух порошков, полученных из равного объема веществ, обратно пропорциональна среднему диаметру их зерен. Для данного случая этот фактор есть сумма произведений, полученных умножением чисел, представляющих содержание данной фракции, на величину, обратную среднему диаметру частиц.

Таблица 2.

Частные факторы поверхности отдельных фракций

Общие факторы поверхн.

3 , глины № 2— 1025 кг/м 3 и глины № 3 — 963 кг/м 3 . Наряду с сырцовыми глинами, употреблявшимися в высушенном и размолотом состоянии, М.И. Хигерович пользовался также и глинами, обожженными при температуре 700° и после размолотыми в тонкий порошок, при содержании около 60% частиц, меньших 0,01 мм. В то время как наши работы в основном проводились на специально подобранных, в отношении гранулометрического состава, песках, М.И. Хигерович работал на природном весьма мелком песке с модулем крупности около 1,20; около 70% этого песка по весу составляли зерна размером от 0,15 до 0,30 мм. Следует отметить, что с этой точки зрения опыты ЦНИПСа в существенной мере дополнили проведенные нами исследования.
Основные выводы, полученные М.И. Хигеровичем в отношении свойств цементно-глиняных растворов и цитируемые нами в дальнейшем, полностью совпали с выводами, сделанными нами на основании исследований, приведенных здесь ранее.

Прочность растворов в кубиках

В этом отношении М.И. Хигерович на основании своих исследований приходит к нижеследующим выводам:
1) При соотношениях, не превосходящих одной весовой части глины к одной части цемента, величины временного сопротивления сжатию цементно-глиняных образцов во все сроки хранения (до одного года) оказались выше, чем величины временного сопротивления сжатию аналогичных цементно-известковых растворов. Это имело место как при сухом, так и при влажном хралени.
При увеличении добавки до двух весовых частей, по отношению к одной весовой части цемента, временное сопротивление цементно-глиняных растворов было лишь незначительно выше, нем в соответствующих цементно-известковых растворах; при дальнейшем же увеличении дозировки (до трех весовых частей добавки на одну часть цемента) цементно-глиняные растворы имели несколько меньшую прочность, чем цементно-известковые.
2) Введение в состав раствора по предложению проф. В.П. Некрасова комбинированных добавок (смеси глин с известью) оказалось более благоприятным, чем введение одной глины. Это открывает известные возможности некоторого сокращения расхода цемента при применении цементно-глино-известковых растворов, предложенных В.П. Некрасовым. Наилучшие результаты при этом давали те смеси, в которых соотношение извести и глины было как 25 :75 (см. табл. 3).

Таблица 3

Состав вяжущего по весу в %

Хранение в сухих условиях

Хранение во влажных условиях

времен. сопротивление сжатию в кг/см 2 через:

времен. сопротивление сжатию в кг/см 2 через:

Примечания:
1. Цемент марки 350—400.
2. Песок весьма мелкий с модулем крупности около 1,20.
3. Состав растворов по объему — 1 вяж : 3 песка.

Ocoбo М.И. Хигерович отмечает правильность соображений в отношении влияния гранулометрического состава раствора, на его прочность, подтвержденную во всех случаях его испытаниями, проведенными, как указывалось выше, на весьма мелких песках. Применяя предложенные нами деления гранулометрического состава раствора на три основных фракции, М.И. Хигерович отмечает большое удобство, возникающее при оценке гранулометрического состава этим методом.

Сравнение сырцовой глины с иными дисперсными добавками

М.И. Хигеровичем был использован в качестве добавки к строительным растворам, помимо глин в сыром и обожженном состоянии, также трепел добужского месторождения в сыром и обожженном виде.
На основании проведенных (сравнительных испытаний им были получены нижеследующие выводы в вопросе сравнительной оценки различных исследованных добавок:
1) Обжиг примененных глин до 700° не дал в дайнам случае улучшения свойств растворов, изготовленных с применением обожженной глины. При небольших расходах цемента применение сырцовой глины приводило к получению растворов более высокой прочности, чем в случаях применения той же глины, но в обожженном виде. При расходах же цемента свыше 300 кг/м 3 раствора прочность растворов с добавками как сырцовой, так и обожженной глин была примерно одинаковой.
Следует отметить, что глины, применявшиеся в работах М.И. Хигеровича, не имели значительных количеств загрязняющих органических примесей.
Сравнивая сырцовую глину как добавку с необожженным трепелом, по показателям прочности растворов можно было установить, что трепел не имеет преимущества перед сырцовой глиной в растворах с одинаковыми объемными дозировками. М.И. Хигерович отмечает, что в этих случаях несколько повышенная прочность цементно-глиняных растворов с сырцовой глиной объясняется более удачным гранулометрическим составом и большей плотностью таких цементно-глиняных растворов в сравнении с цементно-трепельными растворами и с растворами на обожженной глине.

Водоудерживающая способность

Сравнительная водоудерживающая способность различных строительных растворов исследовалась М.И. Хигеровичем различными методами: измерением скорости водоотдачи при помещении раствора на керамические плитки, на специально изготовленные пористые плитки и на красный кирпич, а также с помощью центрофугирования раствора в лабораторной центрофуге.
В результате этих исследований пришли к заключению, что наиболее практически надежным и подходящим для производства способом оценки сравнительной водоудерживающей способности различных растворов явчяется численное определение этой способности при укладке раствора на кирпичах, как это проводилось и в наших исследованиях; при этом отметили, что цементно-глиняные растворы, при одинаковых расходах цемента и при одинаковой (по весу) дозировке извести и глины, имеют более высокую водоудерживающую способность, чем цементно-известковые растворы. В соответствии с этим, водоудерживающая способность нормальных цементно-глино-известковых растворов оказалась в опытах М.И. Хигеровича меньшей, чем цементно-глиняных. Следует отметить, что через 24 часа количество воды, теряемое различными растворами, примерно, одинаково.
Огромное же различие водоудерживающей способности растворов-наблюдалось в опытах М.И. Хигеровича в более короткие сроки, а именно — в первые 10—20 минут. В эти промежутки времени водоудерживающая способность цементно-глиняных растворов оказалась, примерно, такой же, как и чисто-известковых растворов.

Прочность сцепления

В соответствии с повышенной водоудерживающей способностью цементно-глиняных растворов М.И. Хигеровичем были получены наиболее высокие показатели для этих растворов и в отношении сцепления им c сухим красным кирпичом. В то время как общеупотребительные в практике составы растворов (типа 1 цем. : 1 изв. : 9 песка) при испытании с сухим кирпичам дали величины сцепления порядка 0,07—0,10 кг/см 2 , цементно-глиняные растворы при соотношении цемента к глине 1:1 по весу показали увеличение величины сцепления, примерно, в 10 раз, т.е. до 0,7 кг/см 2 . Составы из цемента, глины, извести и песка показали 1 1.2 — 2 раза худшие результаты, точно так же, как и цементно-трепельные растворы.
Таким образом, эти опыты также подтвердили полученные нами ранее результаты как о повышенной водоудерживающей способности цементно-глиняных растворов, так и о вытекающем отсюда лучшем сцеплении их с сухим кирпичом.

Изменения объема

Измерения объема растворов при твердении в различных условиях оценивались М.И. Хигеровичем пУтем измерения длины призм 25 X 25 X X 200 мм. Призмы, выполненные из различных растворов, хранились в эксикаторе над серной кислотой с относительной влажностью, в среднем не превышающей 0,7%, т.е. практически в сухом воздухе. Помимо этого часть образцов хранилась в эксикаторах над водой при относительной влажности среды около 100%. Цементно-известковые и цементно-глиняные растворы одинаковых дозировок дали в этих испытаниях весьма близкие величины изменений линейных размеров.
Наибольшие изменения линейных размеров для цементно-известковых растворов не превышали 1,18 мм/пог. м, а для цементноглиняных растворов — 1,30 мм/пог. м; чисто же известковые растворы имели меньшие величины усадки — в пределах 0,80 мм/noг. м.

Коэфициент размягчения

Коэфициенты размягчения для цементно-глиняных растворов в 6-месячном возрасте по опытам М.И. Хигеровича оказались не ниже 0,55, если коэфициент размягчения чисто-цементных растворов принять равным 100. Следует, однако, отметить, что при этих испытаниях коэфициенты размягчения цементно-глиняных растворов были получены, примерно, такими же, как и для цементно-известковых растворов, что по нашему мнению объясняется применением в данных опытах сравнительно тощих растворов (состав 1 ч. вящущего : 4 ч. песка), изготовленных на весьма мелком песке.

Морозостойкость

В данных испытаниях, как указывалось выше, применялся весьма мелкий песок с модулем крупности около 1,20. В соответствии c этим прочность растворов вообще была крайне невелика, почему все испытанные растворы имели cравнительно невысокую морозостойкость.
М.И. Хигерович отмечает, что снижение прочности растворо в после замораживания было одинаково большим как цементно-известковых, так и у цементно-глиняных растворов, причем многие из них начали разрушаться уже при 6-кратном замораживании.

Влияние сухих условий хранения

Весьма интересные результаты были получены в рассматриваемых исследованиях при оценке вляния условий, в которых хранились различные растворы.
В частности, при сухом хранении, как правило, наблюдался серьезный рост во времени механической прочности всех смешанных цементных растворов независимо от характера примененной добавки.

Общая оценка свойств

а) На основании приведенных выше в краткой, форме результатов исследований М.И. Хигерович свойств подтверждает наши выводы о том, что правильно отобранная и правильно дозированная глина, благодаря своей полидисперности, может дать растворы с особо удачным гранулометрическим составом, что ведет к повышению прочности таких растворов.
Входя в некоторой степени в химическое взаимодействие с известной долей портландцемента при твердении, глина, по суждению М.И. Хигеровича, обусловливает возникновение новообразований, также играющих положительную роль в уплотнении раствора. При этом М.И. Хигерович солидаризируется c высказанным выше общим положением, что глина, находясь в тесном смешении с цементом, перестает существовать как таковая, с присущим ей рядом отрицательных свойств.
б) На основании полученных благоприятных показателей для цементно-глиняных растворов М.И. Хигерович приходит к заключению, что глина сырцовая как сама по себе, так, в некоторых случаях и в смеси с известью может быть введена в цементный раствор, употребляемый для каменной кладки.

При этом введение сырцовой глины взамен извести не ухудшает показателей прочности раствора, а в большинстве случаев заметно повышает таковые (в частности сравнительно с добавкой извести). Однако это (является верным лишь в том случае, когда количество глины не превышает отношений 1:1 или 1,5:1 по отношению к весу цемента, и кроме того, если смешанный раствор в той или иной степени приближается к намеченным нами выше оптимальным гранулометрическим составам для смесей с различной предельной крупностью зерен.
в) Смешанные растворы с сырцовой глиной по прочности и по характеру нарастания этой прочности по данным М.И. Хигеровича не уступают растворам с добавкой трепелов.
г) Применение сырцовой глины в большинстве случаев, видимо, благоприятнее, чем применение глины прокаленной.
д) Как видно из вышеизложенного, рассматриваемая работа в основном подтвердила все важнейшие выводы, сделанные ранее по отношению к цементно-глиняным растворам.

Особенности кладочных растворов для строительства печей

В ходе эксплуатации кирпичной печи на раствор воздействуют нагрузки механического характера, которые вызваны рядом факторов:

  • усадкой сооружения;
  • воздействием ветра на дымовую трубу;
  • температурными изменениями.

Цементный раствор наделен высокими прочностными показателями, но в случае с печью он не способен обеспечить целостность сооружения при температурных скачках и высоких нагрузках. Какой тогда нужен раствор для кладки печи? Для строительства отопительных конструкций нужен состав, отвечающий таким критериям:

  • жаростойкий. Такая смесь при нагреве до высоких температур и последующем охлаждении не растрескивается. При повышении температуры раствор способен воспринимать статические воздействия без изменения несущей способности;
  • огнеупорный. Жаростойкий состав, выдерживающий высокие температуры, химические воздействия, присутствующие в дыму.

Перечисленным требованиям для постройки печей отвечают растворы из глины, гашеной извести, шамота и портландцемента.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector