0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Бетон пористый материал

Ячеистые бетоны

Строительная индустрия постоянно развивается, предлагая для возведения жилых много- и малоэтажных строений новые эффективные материалы, конструкции, технологии. Одним из таких сравнительно молодых материалов является ячеистый бетон, который в последнее время активно и используется в жилищном строительстве наряду с традиционным кирпичом и деревом.

Он полюбился застройщикам, приковал к себе внимание зодчих, поскольку позволяет строить дома быстро и при этом использовать сложные архитектурные конструкции и элементы. Нередко, упоминая о ячеистом бетоне, употребляют понятие легкий, податливый, а в обиходе давно укоренились термины газо- и пенобетон. Что их объединяет, и чем они отличаются? Давайте ближе познакомимся с ячеистым бетоном, выясним: что это такое.

Ячеистые бетоны, их состав и свойства

Название ячеистый бетон объединяет группу материалов, обладающих пористой структурой, похожими свойствами и относящихся к разновидности легких бетонов. Получают материал из смеси, состав которой состоит из вяжущего материала (портландцемента, негашеной извести), воды и кремнеземистого компонента, в качестве которого применяют кварцевый молотый песок, измельченный гранулированный доменный шлак, тонкодисперсную золу уноса. Затвердение вспученной с помощью добавления пенообразователя смеси происходит либо естественным путем, либо в автоклавах.

Производство пено- и газобетона предусматривает применение в качестве вяжущего материала цемент, если используют известь, то на выходе получают пенно- и газосиликаты.

Кварцевый песок обязательно измельчают, увеличивая удельную поверхность кремнеземистого ингредиента и его химическую активность. Процесс производства позволяет регулировать пористость материала и его объемную массу.

К основным строительным характеристикам ячеистого бетона относятся:

  • средняя плотность;
  • прочностные показатели;
  • теплопроводность.

Они зависят от характеристики пористой структуры: средней и максимальной величины ячеек, их формы, показателей толщины перегородок между порами.

Виды ячеистого бетона на основе цемента

В зависимости от технологии изготовления различают две основные категории ячеистого материала: пено- и газобетон. В базовую основу обоих типов бетона включены одинаковые компоненты: цемент, песок, вода. В полученную исходную смесь для образования пористой структуры в обязательном порядке добавляется элемент, служащий пенообразователем. Благодаря этой добавке в цементно-песчаном растворе образуются воздушные капсулы, которые и формируют поры (ячейки). Но далее технологический процесс производства пенобетона и газобетона разнится.

Пенобетон относится к материалам естественного твердения. Блоки из этого сорта ячеистого бетона получают двумя способами:

  • формованием, когда готовую массу разливают в предварительно заготовленные специальные формы, оснащенные перегородками;
  • распиловкой массива пенобетона в соответствии с требуемым типоразмером блоков.

Выпускается также армированный вариант пеноблоков, которые превышают по прочности другие аналоги благодаря добавлению в исходную смесь полипропиленовой фибры.

По плотности блочный материал из пенобетона разделяют на три группы: теплоизоляционные, конструктивно- теплоизоляционные и конструктивные.

Процесс изготовления газобетона предусматривает затвердение поризованной массы, куда входит песок, цемент (часто присутствует также известь) с добавлением воды и алюминиевого порошка. Когда компоненты смешиваются, происходит образование пузырьков водорода, в результате чего в значительной мере увеличивается объем смеси.

Завершение структурообразования и набор прочности газобетона происходит в автоклавах, где материал застывает. Температурная обработка проводится, учитывая массивность изделий. Чтобы избежать образования трещин, технологический процесс предусматривает плавное увеличение и снижение температуры и давления.

Блоки из ячеистого бетона обладают:

  • высокими показателями теплосбережения;
  • легкостью и быстротой возведения объекта;
  • хорошей звукоизоляцией;
  • пожаробезопасностью, обусловленной высокой степенью огнестойкости;
  • небольшим весом;
  • экологичностью;
  • невысокой стоимостью материала.

Если же сравнивать пенобетонные блоки с газобетономи, то пенобетон уступает своему аналогу в таких параметрах, как прочность и точность геометрических форм.

Клей для ячеистого бетона

В отличие от кирпичной кладки, которая выполняется с использованием цементного раствора, для возведения коробки с применением блоков стеновых из ячеистого бетона рекомендуется пользоваться специальным клеем. Если пренебречь данным советом и класть блочный материал на традиционный раствор, то швы становятся теми «мостиками холода», которые увеличат теплопотери.

На строительном рынке присутствует большой ассортимент сухих смесей для получения клеящего состава, предназначенного для кладки несущих стеновых конструкций и внутренних перегородок из ячеистых блоков. Приготовляют клей, четко придерживаясь пропорции, рекомендованной производителем, используя для тщательного перемешивания строительный миксер.

Клеящую массу слоем в 2 – 3 мм наносят, придерживаясь такой последовательности: сначала на боковую поверхность блока, затем на горизонтальную. Укладывают блоки только на свеженанесенный состав. В целом процедура кладки аналогична работе с кирпичом и цементным раствором.

Стены, выложенные из блоков с использованием клея, имеют безукоризненно прочное сцепление, получаются ровными и не требуют дополнительных работ по их выравниванию. Что касается потерь тепла, то они минимальны.

Штукатурка для ячеистого бетона

Ячеистые бетоны при всех своих достоинствах обладают серьезным недостатком: подвержены воздействию влаги, характеризуются сравнительно большой паро- и воздухопроницаемостью (в 5 – 10 раз выше, чем у тяжелых бетонов), поэтому требуют защиты поверхности стеновых конструкций. Отделка фасада отлично справляется с этой задачей и придает эстетичный внешний вид кладке из блочного стенового материала. И использовать для этого можно любые отделочные материалы:

  • облицовочный камень и кирпич;
  • затирку с минеральной краской;
  • сайдинг и вагонку
  • вентилируемый фасад.

Однако традиционным вариантом фасадной отделки по-прежнему остается оштукатуривание. Для этой цели применяют специальные смеси, которые служат для выравнивания и оштукатуривания базовых поверхностей из ячеистого бетона. Продукт, предназначенный для наружных работ, характеризуются отличной адгезией с данными основаниями, пластичностью и стойкостью к атмосферным осадкам. Устойчивость к низким температурам обеспечивается наличием противоморозных присадок.

Популярность пенно- и газобетонных блоков

Востребованность ячеистых блоков объясняется несколькими факторами. В домах, построенных их этих материалов, создается экологически комфортная обстановка, обеспечивается необходимая тепло- и звукоизоляция жилья. Интерес к блокам объясним также быстротой и удобством возведения конструкции, ведь каждый застройщик стремится вселиться в новый дом, как можно быстрее. Не последнюю роль играет и цена материалов из ячеистого бетона, они дешевле кирпича.

Эти факторы серьезно влияют на рост популярности частных домов из блоков независимо от регионов и климатической зоны их строительства.

Карбонизация бетона: влияние на долговечность конструкции

Прочностные характеристики бетона позволяют использовать его при строительстве несущих конструкций, которые подвержены высоким нагрузкам. Он прочен, долговечен и устойчив к перепадам температур, но, несмотря на это, бетон имеет один важный недостаток — карбонизацию.

Что такое карбонизация бетона

Это одна из самых распространенных причин разрушения бетонных и железобетонных сооружений. Этот процесс приводит к деформации поверхности и создает условия для возникновения коррозии металлической арматуры, используемой при строительстве.

Карбонизация — это процесс нейтрализации бетона под воздействием углекислого газа и влаги, поглощенных из окружающей среды. В течение этого процесса происходит постепенное изменение изначальных свойств материала — понижение щелочного баланса и образование карбоната кальция.

Общие сведения

Бетон — пористый материал, из-за чего он с легкостью впитываетСО2, который при взаимодействии с цементным камнем и клинкерными добавками, снижает щелочность жидкой фазы материала, что приводит к негативным последствиям.

Конструкции, имеющие в основании металлическую арматуру,в ходе карбонизации начинают корродировать, в результате чего появляется ржавчина, которая в свою очередь, приводит к нарушению целостности сооружения и снижению несущей способности.

Химические процессы

Процесс карбонизации начинается с момента изготовления материала и длится в течение всей эксплуатации. Происходит он следующим образом — в бетоне при контакте с воздушной средой, а именно кислотообразующими газами (углекислый газ), происходит сложная химическая реакция по превращению гидроксида кальция в карбонат кальция.

Углекислый газ проникает в поры бетонного основания и при воздействии влаги нейтрализует щелочную среду. В процессе реакции показатели рН снижаются с 12-12,5 до 9, в результате чего защитные свойства материала ослабляются, и появляется комфортная среда для развития коррозии.

Основные этапы образования ржавчины:

  • Диффузия СO2 через поры бетона.
  • Реакция и растворение СO2 в щелочной поровой жидкости.
  • Нейтрализация Ca(OH)2 полученной кислотой.

Насколько активным будет процесс карбонизации зависит от качества бетона и характеристик окружающей среды. Особое значение имеют следующие показатели:

  • Влажность воздуха.
  • Концентрация углекислого газа.
  • Пористость и проницаемость бетона.
  • Давление.
  • Температура окружающего пространства.

В результате реакции остаются продукты гидратного образования с побочными веществами — глинозем, гидратированный кремнезем, оксид железа.

Даже малый процент углекислого газа в воздухе запускает реакцию нейтрализации бетона.

Интенсивность течения

Скорость течения процесса напрямую зависит от показателей влажности воздуха:

  • В пределах 25% и около 100% — минимальная скорость;
  • от 50% до 60% — максимальные значения.

Недостаток влаги или ее избыток практически нейтрализуют процесс карбонизации. При минимальных значениях влаги не достаточно для начала запуска реакции, а при максимальных — снижается способность диффузной проницаемости.

Глубина карбонизации бетона

При проведении оценки надежности бетонной конструкции проводится определение глубины карбонизации. Подданным определением понимается расстояние от поверхности конструкции до границы перехода рН с кислого на щелочной.

При нормальных условиях коррозия может продвигаться вглубь на4-5 мм ежегодно или оставаться в пассивном состоянии. При наличии разрушенных участков или оголенной арматуры процесс ускоряется и может достигать 20 — 30 мм в год.

Как определить степень карбонизации бетона

Степень и глубина может определяться разными методами, например:

  • Рентгенодифрактометрией.
  • Инфракрасной спектроскопией.
  • Микроскопией.
  • Дифференциально-термическим анализом.
  • Химическим анализом.
  • Электрохимическим методом.
  • Определение с помощью индикаторов.

Чаще всего применяют тесты индикаторного типа в сочетании с карбометрическими физико-химическими способами.

Для выявления поврежденного участка вычисляется степень перехода бетона в форму карбоната, а для определения глубины процесса проводятся обследования объекта, в ходе которых используют колориметрический метод — нанесение 0,1% спиртового раствора фенолфталеина.

Средства для оценки

Лабораторные исследования по измерению степени карбонизации проводят в несколько этапов:

  • Образцы бетона покрывают изолирующими материалами, например, эпоксидной или акриловой смолой, затем помещают в эксикаторы под раствор хлорида натрия.
  • Спустя два дня образцы вынимают и измеряют диаметр, результаты заносятся в специальный журнал, где отмечают площадь каждого образца.
  • Далее образцы раскалывают и проводят оценку глубины проникновения раствора, именно она показывает способность конкретного материала подвергаться карбонизации.

Применение фенолфталеина

Раствор фенолфталеина используется в качестве индикаторного теста для выявления поврежденных участков и глубины проникновения коррозии.

Поверхность смачивается бесцветным 0,1% раствором фенолфталеина и по изменению его оттенка измеряется степень проникновения. Пробы снимаются только на свежем сколе.

При наличии щелочной среды (рН>8,3) бесцветный раствор меняет цвет на малиновый,в кислотной среде (рН

Способы восстановления бетона

Есть два основных способа защиты и восстановления бетонной поверхности — это снижение способности бетона к окислению и влагопоглощению и укрепление конструкции путем физико-химической обработки.

Замедлить процесс можно при применении специальных защитных покрытий, которые имеют хорошие показатели водопроницаемости и отличаются высокими коэффициентами сопротивления к диффузии углекислого газа — полиуретановые, акриловые и эпоксидные смолы, силиконы, силоксаны и т.п.

Для замедления процесса используется подщелачивание бетона, выполняется оно двумя способами:

  • Электрохимическое воздействие при помощи проводников с катодами. Позволяет восстановить щелочной баланс материала и обеспечить пассивное состояние металлической арматуры.
  • Восстановление щелочности в процессе ионной диффузии. На бетонное основание наносится высокощелочной раствор, который стимулирует оптимальный химический баланс для поддержания прочности материала.

Эти методы замедления процесса карбонизации являются профилактическими. В качестве же капитальной меры производится полное удаление и замена дефектной части — поврежденные слои снимаются, тщательно зачищаются, затем поверхность обрабатывается изолирующим покрытием.

Прогнозирование карбонизации

Для предупреждения возникновения разрушения будущей постройки проводится комплексное обследование конструкции.

Первоначальное прогнозирование происходит на этапе проектирования.

Прогнозирование опирается на следующие данные:

  • Условия внешней среды — температура, влажность, давление, концентрация кислотных газов.
  • Изначальные свойства материала— показатели прочности, влагостойкости и паропроницаемости.
  • Степень гидратации цемента.
  • Динамика изменений свойств материала— измеряется в ходе эксплуатации.

На основе полученных данных проводится обследование конструкции и последующее прогнозирование, которое позволяет определить текущее состояние бетона и его антикоррозийные свойства.

Преимущества карбонизации

Процесс приводит к изменению изначальных свойств бетона, и несмотря на то, что он создает условия для коррозии арматурных конструкций, у него есть несколько преимуществ:

  • Повышение плотности бетона за счет образования карбоната кальция.
  • Увеличение водостойкости и газонепроницаемости за счет снижения объема пор.
  • Повышение прочности материала на 20 — 50%(в зависимости от марки бетона).

Карбонизация не влияет на прочность и долговечность бетонных сооружений, она оказывает пагубное влияние только на арматуру.

Карбонизация — частая причина разрушения построек из бетона, она снижает технические свойства материала, приводит к деформации поверхности, а самое главное — создает условия для возникновения коррозии стальных элементов конструкции.

Важно проводить прогнозирование и своевременную диагностику поверхности, чтобы в случае возникновения опасности принять меры по укреплению сооружения и замедлению процесса окисления бетона.

Ячеистый бетон

Ячеистый бетон был изобретен еще в 1924 году, но и по сей день остается востребованным строительным материалом. По структуре ячеистый бетон напоминает пемзу, пористость может изменяться в пределах 45 — 95%. В зависимости от степени пористости материала меняются и его технические характеристики, а следовательно и область применения.

Что такое ячеистый бетон?

Ячеистый бетон представляет из себя пористый материал на основе минеральных вяжущих и кремнеземистого наполнителя. Поры в бетоне имеют размер 1 — 1,5 мм. С увеличением количества пор изменяется и плотность самого бетона (в меньшую сторону) и вместе с плотностью меняются и функциональные особенности этого материала и область применения.

Бетон плотностью 200 — 500 кг/м2 — является скорее теплоизоляционным материалом и применяется для теплоизоляции железобетонных плит, чердачных перекрытий, может использоваться в качестве наполнителя в каркасных конструкциях.

Бетон с плотностью 500 — 1000 кг/м2 — является уже теплоизоляционно — конструкционным и может применяться для строительства сооружений (не более 3 — х этажей).

Конструкционный бетон имеет плотность 1000 — 1200 кг/м2. Может применяться для возведения многоэтажных зданий. В зданиях с большой нагрузкой применяется дополнительное армирование бетона.

Для образования ячеистой структуры бетона в основном применяют три способа поризации материала. Аэрирование бетонной массы под давлением. Вспучивание бетонной массы в вакууме — газообразование. Газопенный способ — включает в себя элементы предыдущих способов получения ячеистого бетона.

В качестве вяжущих компонентов применяют цемент, гипс и известь. В качестве наполнителя используется кварцевый песок, зола и металлургические шлаки. По типу вяжущего различают и типы ячеистого бетона: пенобетон (основа цемент), газосиликат (известь), пеногипс (соответственно — гипс).

По способу нагрева бетон подразделяется на автоклавный и неавтоклавный. Автоклавный бетон прогревают при повышенном давлении, которое может доходить до 10 Атм.

Характеристики ячеистого бетона делают этот материал порой гораздо предпочтительней других строительных материалов (таких как бетон, кирпич, природный камень) в основном из за меньшего удельного веса (в 1,5 — 2 раза). Малый вес позволяет значительно разгружать фундаменты сооружений, либо вообще сменить тип фундамента на менее затратный. К тому же многие здания спроектированные из ячеистого бетона (в зависимости от назначения), вообще не нуждаются в дальнейшем утеплении, или затраты на последующую утепление и отделку могут быть значительно сокращены. Да и затраты на отопление могут быть значительно ниже (на 30 — 50%).

Статья оказалась полезной? Поделитесь ссылкой с друзьями!

Материалы для производства легких бетонов на пористых заполнителях

В качестве вяжущего для легких бетонов применяют все виды цементов и другие вяжущие не ниже М 300. Желательно использовать высокоактивные вяжущие, расход которых на 1 м 3 бетона будет меньше, чем малоактивных вяжущих. Цементный камень в легких бетонах является самой тяжелой частью их, и сокращение расхода цемента введет к снижению объемной массы бетона.

Исходя из необходимости получения бетонной смеси требуемого качества минимальные расходы вяжущего на 1 м 3 легких бетонов должны быть не меньше величин, приведенных в табл. 7.

В случае применения высокоактивных цементов, когда требуемая прочность бетона может быть достигнута при малых расходах вяжущего для увеличения количества цементного теста в бетонную смесь необходимо вводить тонкомолотые добавки. В бетоны низких марок с малым расходом вяжущего (а иногда и с недостаточным расходом мелких фракций заполнителя), характеризующихся низкой удобоукладываемостью, желательно вводить гидрофобизирующие поверхностно-активные добавки (мылонафт и др.).

Минимально допустимый расход вяжущего в зависимости от вида легкого бетона

Вид бетонаМинимально допустимый расход вяжущего, кг/м 3 бетона
общийв том числе цемента
Теплоизоляционный10080
Конструктивно-теплоизоляционный неармированный125100
Конструктивно-теплоизоляционный и конструктивный армированный225150

Для приготовления легких бетонов используют природные и искусственные пористые заполнители. В зависимости от формы и характера поверхности пористые заполнители делят на щебень, состоящий из кусков неправильной формы с открытыми порами на поверхности, и гравий, представляющий собой смесь зерен округлой формы с гладкой и оплавленной поверхностью. Применяют крупный заполнитель (щебень и гравий), состоящий из зерен 5-40 мм (с зернами более 40 мм заполнитель из-за малой его прочности использовать не рекомендуется), крупный пористый песок с размерами зерен 1,2-5 мм и мелкий пористый песок с размерами зерен менее 1,2 мм.

В зависимости от насыпной объемной массы (кг/м 3 ) в сухом состоянии пористые заполнители делят на марки от 100 до 1200. Наиболее легкие заполнители применяют для теплоизоляционных бетонов, тяжелые — для конструктивно-теплоизоляционных и конструктивных бетонов. Для конструктивных бетонов допускается частичная или полная замена пористого песка тяжелым песком.

Для легких бетонов используют природные пористые горные породы вулканического и осадочного происхождения. Наибольшее применение из пористых горных пород вулканического происхождения получили следующие их виды.

Пемза образовалась в результате быстрого остывания насыщенной газами лавы и поэтому характеризуется губчатым строением. Встречаются пемзы с крупнопористой и мелкопористой структурой. Крупнозернистые пемзы обеспечивают получение конструктивно-теплоизоляционных бетонов с объемной массой в высушенном состоянии 500-1200 кг/м 3 и прочностью 0,1-7,5 МПа (10-75 кг/см 2 ). Мелкопористую пемзу, как более тяжелый заполнитель, применяют для конструктивных бетонов с объемной массой 1500-1800 кг/м 3 и прочностью 7,5-40 МПа (75-400 кг/см 2 ).

Вулканические шлаки относятся к излившимся обломочным породам. В зависимости от условий залегания встречаются вулканические шлаки с различной объемной массой исходной горной породы. Легкие вулканические шлаки применяют для конструктивно-теплоизоляционных бетонов объемной массой в сухом состоянии 600-1400 кг/м 3 и прочностью 1-10 МПа (10-100 кг/см 2 ), а более тяжелые — для конструктивных бетонов с объемной массой 1600-1800 кг/м 3 и прочностью 10-20 МПа (100-200 кг/см 2 ).

Вулканические туфы, получившиеся в процессе уплотнения вулканического пепла, и туфовые лавы, образовавшиеся в результате попадания вулканического пепла и песка в расплавленную лаву до ее остывания, в зависимости от условий образования характеризуются различным количеством и величиной пор. Крупнопористые вулканические туфы и туфовые лавы с прочностью при сжатии менее 10-15 МПа (100-150 кг/см 2 ) используют в конструктивно-теплоизоляционных и конструктивных бетонах прочностью 5-20 МПа (50-200 кг/см 2 ) с объемной массой 1300-1800 кг/м 3 , а более плотные породы — для конструктивных бетонов прочностью до 40 МПа (400 кг/см 2 ) с объемной массой 1600-1800 кг/м 3 .

Из осадочных пород чаще всего используют пористые известняки и известковые туфы, состоящие в основном из углекислого кальция с объемной массой исходной породы от 1200-1300 кг/м 3 до 1600-1900 кг/м 3 с прочностью при сжатии 1-20 МПа (10-20 кг/см 2 ). Известковые туфы и ракушечники используют для конструктивно-теплоизоляционных и конструктивных бетонов объемной массой в сухом состоянии 1400-1800 кг/м 3 и прочностью от 3,5 до 20 МПа (35-200 кг/см 2 ).

Искусственные пористые заполнители делят на две группы: отходы промышленности и специально изготавливаемые заполнители.

К отходам промышленности относятся:

топливные шлаки, представляющие собой продукты сжигания кускового угля в промышленных и других топках. Шлаки являются наиболее дешевыми заполнителями, но в большинстве из них содержится значительное количество частиц несгоревшего угля, извести, растворимых солей и других примесей, вредно влияющих на атмосферостойкость бетона (морозостойкость и др.). Лучшими по технологическим свойствам являются антрацитовые и хорошо спекшиеся каменноугольные шлаки. Объемная масса бетонов на топливных шлаках составляет 1200-1800 кг/м 3 ;

пористые металлургические шлаки — кусковые материалы, образуюшиеся в результате естественного охлаждения расплавов металлургических шлаков, содержащих повышенное количество газов. Из-за колебаний химического состава шлакового расплава и изменения условий его охлаждения в отвалах завода структура и свойства образующихся шлаков могут колебаться в значительных пределах. В качестве заполнителей используют не распадающиеся со временем чаще всего из-за полиморфных превращений C2S при медленном охлаждении шлаки с насыпной объемной массой не более 1000 кг/м 3 и объемной массой в куске не более 1700 кг/м 3 . Так как бетоны с заполнителями из пористых доменных шлаков обладают повышенной объемной массой и теплопроводностью, их применяют главным образом для конструктивных бетонов.

Из специально изготавливаемых пористых заполнителей наибольшее распространение получили:

керамзит и его разновидности (шунгезит и др.) — искусственный гравий и песок ячеистого строения с оплавленной поверхностью зерен. Керамзит всех видов изготавливают из хорошо вспучивающихся легкоплавких глинистых пород (пластичных тонкодисперсных глин, глинистых сланцев) путем ускоренного их обжига во вращающихся печах а песок — в «кипящем слое». В результате термической обработки при температуре 1100—1300° С керамзит не имеет в своем составе вредных для цемента примесей; морозоустойчив, огнестоек и, обладая оплавленной поверхностью зерен с высокоразвитой системой преимущественно закрытых пор, отличается небольшой объемной массой и теплопроводностью при сравнительно высокой прочности зерен;

шлаковая пемза — пористый материал, получаемый вспучиванием расплавов металлургических шлаков путем их быстрого искусственного охлаждения;

аглопорит — материал, получаемый спеканием топливных шлаков и зол, а также углесодержащих шахтных и других глинистых пород на решетках агломерационных машин;

перлит — пористый сыпучий материал, образующийся в процессе обжига при температуре 900—1000° С дробленых водосодержащих вулканических стекол (перлитов, обсидианов, витрофиров и т. п.). При нагревании исходная порода интенсивно вспучивается, образуя легковесный заполнитель с насыпной массой 50-300 кг/м 3 , характеризуемый хорошими теплоизоляционными качествами. Из-за невысокой прочности получаемых бетонов перлиты используют главным образом для теплоизоляционных бетонов.

К пористым заполнителям предъявляют следующие требования:

Важнейшие свойства пористых заполнителей, применяемых для легких бетонов

ЗаполнительКрупный (гравий, щебень) заполнительМелкий заполнитель (песок)
объемная масса в куске, кг/м 3насыпная объемная масса отдельных фракций, кг/м 3прочность в стандартном цилиндре, МПа (кг/см 2 )объем межзерновых пустотнасыпная объемная масса отдельных фракций, кг/м 3
Керамзит600-1400300-7000,8-4,0 (8-40)40-50600-1000
Шлаковая пемза500-1800250-10000,1-2,7 (1-27)55-70475-1300
Аглопорит700-1600350-8000,3-2,3 (3-23)55-65550-1100
Пемза крупнопористая400-600300-4600,5-5 (5-50)500
Пемза мелкопористая1100-1800600-9001,6-15 (16-150)700-1200
Вулканические шлаки500-800400-5001,7-6,7 (17-67)600-750
800-1600650-100010-17 (100-170)1070-1150
Вулканические туфы и туфовая лава730-1800675-12000,1-15 (10-150)720-1300
Известняки1200-1800750-11000,5-7 (5-70)880-1300

насыпная объемная масса крупного заполнителя не должна превышать 1200 кг/м 3 , а мелкого — 1300 кг/м 3 ;

в каждой фракции крупного заполнителя количество зерен с размерами выше наибольшего и ниже наименьшего не должно быть более 10%, а полусумма полных остатков на контрольных ситах с наибольшим и наименьшим размерами зерен данной фракции должна составлять 30-60% по объему;

морозостойкость крупных наполнителей, используемых в бетонах, не защищенных от внешних атмосферных воздействий, должна обеспечивать получение бетона требуемой проектом марки по морозостойкости;

прочность искусственных пористых заполнителей — не менее требуемой нормами, прочность исходной породы природных заполнителей — не менее 50% от требуемой прочности бетона, а коэффициент размягчения при использовании в конструктивных бетонах — не менее 0,8, а в конструктивно-теплоизоляционных — 0,7;

содержание серы в заполнителях, применяемых в железобетоне, не более 2%, а количество водорастворимых сульфатов — 1% по массе (в пересчете на SO3);

содержание в мелкой фракции песка пылевидных частиц размером менее 0,14 мм, обладающих свойствами активной минеральной добавки, допускается до 40% по объему.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector